Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612105

RESUMO

Epoxy resin compositions are used in modern railways, replacing other materials. However, epoxy composites in public transport are subject to many requirements, including that they should be flame retardant and resistant to weather conditions. The aim of the research was to analyse the resistance to solar ageing of epoxy resin composites containing flame retardants and the addition of the natural stabilising substance-quercetin. The homogeneity of the samples (optical microscopy and FTIR spectroscopy) and their thermal stability (TGA thermogravimetry) were analysed. The T5 temperature, which is the initial temperature of thermal decomposition of the samples, was 7 °C higher for the epoxy resin containing quercetin, so the material with polyphenol was characterised by better thermal resistance. Changes in material properties (hardness, surface energy, carbonyl index, colour) after 800 h solar ageing were investigated. The tensile tests on materials were executed for three different directions before and after ageing effect. The samples showed good resistance to degradation factors, i.e., they retained the functional properties (hardness and mechanical properties). However, analysis of carbonyl indices and surface energies showed that changes appeared in the composites after solar ageing, suggesting the beginning of material degradation. An approximately 3-fold increase in the polar component in epoxy resin compositions (from approximately 3 mN/m to approximately 11 mN/m) is associated with an increase in their hydrophilicity and the progress of ageing of the materials' surface. The obtained results are an introduction to further research on the long-term degradation processes of epoxy resins with plant stabilisers.

2.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276590

RESUMO

This research concerns the modification of commercially available epoxy resin with flame retardants in order to obtain aging-resistant and antimicrobial polymeric materials with a plant stabilizer dedicated to use in rail transport. Polymer compositions based on epoxy resin, fiberglass fabric, and naringenin were prepared. Naringenin was added as a natural stabilizer at 2, 4, and 8 phr. The materials were subjected to solar aging lasting 800 h. The hardness of the samples, surface energy, and carbonyl indexes were determined, and the color change in the composition after aging was analyzed. In addition, microscopic observations, analyses of mechanical properties, and microbiological tests were performed. The hardness determination showed that the samples retained their functional properties after solar aging. The increase in the polar component of the surface energy of all materials indicated the beginning of the degradation process of the composites. The tensile one-directional tests were carried out for plane samples taken in three directions (0, 90, and 45 degrees referred to a plate edge) before and after the aging process. The addition of naringenin did not affect the functional and surface properties of the epoxy resin-based materials. Polyphenol stabilized polymer composites, as evidenced by the results of carbonyl indexes. Moreover, the obtained samples showed good antimicrobial properties for E. coli and C. albicans in the field of testing the viability of microbial cells in contact with the tested surfaces.


Assuntos
Anti-Infecciosos , Citrus , Flavanonas , Resinas Epóxi , Escherichia coli , Polímeros , Anti-Infecciosos/farmacologia
3.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744827

RESUMO

Naringenin is one of the flavonoids originating from citrus fruit. This polyphenol is mainly found in grapefruit, orange and lemon. The antioxidant and antimicrobial properties of flavonoids depend on their structure, including the polymeric form. The aim of this research was to achieve enzymatic polymerization of naringenin and to study the properties of poly(naringenin). The polymerization was performed by methods using two different enzymes, i.e., laccase and horseradish peroxidase (HRP). According to the literature data, naringenin had not been polymerized previously using the enzymatic polymerization method. Therefore, obtaining polymeric naringenin by reaction with enzymes is a scientific novelty. The research methodology included analysis of the structure of poly(naringenin) by NMR, GPC, FTIR and UV-Vis and its morphology by SEM, as well as analysis of its properties, i.e., thermal stability (DSC and TGA), antioxidant activity (ABTS, DPPH, FRAP and CUPRAC) and antimicrobial properties. Naringenin oligomers were obtained as a result of polymerization with two types of enzymes. The polymeric forms of naringenin were more resistant to thermo-oxidation; the final oxidation temperature To of naringenin catalyzed by laccase (poly(naringenin)-laccase) was 28.2 °C higher, and poly(naringenin)-HRP 23.6 °C higher than that of the basic flavonoid. Additionally, due to the higher molar mass and associated increase in OH groups in the structure, naringenin catalyzed by laccase (poly(naringenin)-laccase) showed better activity for scavenging ABTS+• radicals than naringenin catalyzed by HRP (poly(naringenin)-HRP) and naringenin. In addition, poly(naringenin)-laccase at a concentration of 5 mg/mL exhibited better microbial activity against E. coli than monomeric naringenin.


Assuntos
Citrus , Lacase , Antioxidantes/farmacologia , Citrus/metabolismo , Escherichia coli/metabolismo , Flavonoides/química , Peroxidase do Rábano Silvestre/metabolismo , Lacase/metabolismo , Oxirredução , Polímeros
4.
Antioxidants (Basel) ; 10(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34829594

RESUMO

The aim of the study was to analyze the polyphenolic profile of cone extracts of Douglas fir, Scots pine and Korean fir, and to study their antioxidant activity. The mechanism of electro-oxidation of polyphenols (such as procyanidins and catechins) from cone extracts was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), as well as spectrophotometric methods-ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate)), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power ) and CUPRAC (CUPric Reducing Antioxidant Capacity). The scientific novelty of the research is the comprehensive analysis of cone extracts in terms of antioxidant properties. Due to the high polyphenol content, the extracts showed significant ability to reduce oxidative reactions, as well as the ability to scavenge free radicals and transition metal ions. Douglas fir, Scots pine and Korean fir cone extracts can potentially be used as natural stabilizers, preservatives and antimicrobial substances in the food industry and in medications.

5.
Materials (Basel) ; 14(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922490

RESUMO

Biomaterials prepared based on raw plant materials are becoming more and more popular due to their specific properties and environmental friendliness. Naringenin is a flavonoid naturally occurring in citrus fruit with antioxidant and pharmacological activity. Polymeric materials based on flavonoids may have favorable properties in comparison to monomeric polyphenols, such as stronger antioxidant and antimicrobial properties. One of the methods of obtaining the polymeric form of flavonoids is polymerization with a cross-linking compound. This method has already been used to obtain poly(quercetin) and poly(rutin) from a flavonol group as well as poly(catechin) from the flavan-3-ol group of flavonoids. However, to date, no polymeric forms of flavanones have been prepared in a cross-linking reaction; the aim of this study was to obtain poly(naringenin) by reaction with a cross-linking compound using glycerol diglycide ether GDE. The degree of conversion of naringenin to poly(naringenin) determined by FTIR spectroscopy was 85%. In addition, the thermal, antioxidant and antimicrobial properties of poly(naringenin) were analyzed. Poly(naringenin) was characterized by greater resistance to oxidation and better thermal stability than monomeric naringenin. Moreover, polymeric naringenin also had a better ability to scavenge ABTS and DPPH free-radicals. In contrast to monomeric form, poly(naringenin) had antimicrobial activity against Candida albicans. Polymeric biomaterial based on naringenin could potentially be used as a natural stabilizer and antimicrobial additive for polymer compositions, as well as pro-ecological materials.

6.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557223

RESUMO

Few scientific reports have suggested the possibility of using natural phenolic acids as functional substances, such as stabilizers for polymeric materials. The replacement of commercial stabilizers in the polymer industry can be beneficial to human health and the environment. The aim of this study was to obtain biodegradable composition of polylactide (PLA) and polyhydroxyalkanoate (PHA) with natural amber (succinic) acid. The materials were subjected to controlled thermooxidation and solar aging. The research methodology included thermal analysis, examination of surface energy, mechanical properties and spectrophotometric analysis of the color change after aging. The samples of aliphatic polyesters containing from 1 to 2 parts by weight of succinic acid were characterized by increased resistance to oxidation (DSC analysis). Natural acid, preferably at a concentration of 1-1.5 parts by weight, acted as a stabilizer in the polymer compositions. On the other hand, materials that had amber acid above 2 parts by weight added were more susceptible to oxidation (DSC). They also showed the lowest aging coefficients (K). The addition of acid at 2.5-4 parts by weight caused a pro-oxidative effect and accelerated aging. By adding amber acid to PLA and PHA, it is possible to design their time in service and their overall lifetime.


Assuntos
Ácidos/química , Materiais Biocompatíveis/química , Produtos Biológicos/química , Polímeros/química , Varredura Diferencial de Calorimetria , Macrófagos/imunologia , Macrófagos/metabolismo , Oxirredução , Ácido Succínico/química , Temperatura , Termogravimetria
7.
Biomolecules ; 10(8)2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824310

RESUMO

Catechin is a plant polyphenol with valuable antioxidant and health-promoting properties. Polymerization is one way to stabilize flavonoids and may cause changes in their specific properties. The aim of this study is to obtain a polymeric complex catechin compound with high thermal stability. As a result of polymerization, a condensed and cross-linked catechin structure was obtained, which guaranteed high thermal resistance and, moreover, the phosphorus groups added in the second step of polymerization ensured that the compound obtained had thermal stability higher than natural condensed tannins. The first step of self-polymerization of (+)-catechin may be an easy way to obtain proanthocyanidins with greater antioxidant activity. The second step of the polymerization obtained a polymeric complex catechin compound that showed better thermal stability than catechin. This compound can potentially be used as a new pro-ecological thermal stabilizer.


Assuntos
Catequina/química , Proantocianidinas/química , Chá/química , Estabilidade de Medicamentos , Estrutura Molecular , Extratos Vegetais/química , Polimerização , Termodinâmica
8.
Polymers (Basel) ; 12(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824947

RESUMO

Compounds of plant origin are used with polymers as functional additives. However, these substances often have biological (antimicrobial) activity. The bactericidal and fungicidal properties of natural additives can affect the composting process of biodegradable polymers. The scientific novelty of the manuscript is the investigation of the effect of the addition of herbal antimicrobial functional substances on the composting process of green polymers. The aim of the study is to analyze composting processes of biodegradable polymers polylactide (PLA) and polyhydroxyalkanoate (PHA) containing ß-carotene, juglone, morin, and curcumin. As part of the research, six-month composting of materials was performed. At time intervals of one month, the weight loss of samples, surface energy, colour change, mechanical properties, and carbonyl indices (based on FTIR spectroscopy) of composted materials were examined. The research results showed that the addition of selected plant substances slightly slowed down the process of polymer composting. Slower degradation of samples with plant additives was confirmed by the results of mechanical strength tests and the analysis of changes in carbonyl index (CI). The CI analysis showed that PLA and PHA containing a natural additive degrade a month later than reference samples. However, PLA and PHA polyesters with ß-carotene, juglone, morin, and curcumin were still very biodegradable.

9.
Polymers (Basel) ; 12(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197535

RESUMO

Gallates are widely used as antioxidants in the food and cosmetics industries. The purpose of the study was to obtain pro-ecological materials based on biodegradable polyesters, such as polylactide (PLA) and polyhydroxyalkanoate (PHA), and gallates. Gallates (ethyl, propyl, octyl, and lauryl) have not been used so far in biodegradable polymers as stabilizers and indicators of aging. This manuscript examines the properties of gallates such as antioxidant capacity and thermal stability. This paper also presents the following analyses of polymer materials: specific migration of gallates from polymers, SEM microscopy, differential scanning calorimetry (DSC), wide-angle X-ray diffraction, mechanical properties, surface free energy, and determination of change of color after controlled UV exposure, thermooxidation, and weathering. All gallates showed strong antioxidant properties and good thermal stability. Due to these properties, in particular their high oxidation temperature, gallates can be successfully used as polyester stabilizers. Biodegradable polyesters containing gallates can be an environmentally friendly alternative to petrochemical packaging materials.

10.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936484

RESUMO

Plant polyphenols are a huge group of compounds with a wide spectrum of applications. Substances from this group have been used in polymer materials such as stabilizers, dyes, indicators, fungicides, and bactericides, especially in new generation packaging materials. The aim of this study is to obtain environmentally friendly materials based on the biodegradable aliphatic polyesters, polylactide (PLA) and polyhydroxyalkanoate (PHA), with plant functional additives, (+)-catechin and polydatin. These natural polyphenols (polydatin and (+)-catechin) have not been used so far in polymer materials (especially in biodegradable polyesters) as stabilizers, dyes, and indicators of aging. The application of polydatin and (+)-catechin as multifunctional additives for biodegradable polymers is a scientific novelty. This paper presents the following analyses of polyester materials: SEM microscopy, wide angle x-ray diffraction, mechanical properties, thermal analysis, surface free energy analysis, and determination of change of color after controlled UV exposure, thermal oxidation and weathering. Both PLA and PHA polyesters were characterized by higher resistance to oxidation and greater resistance to degradation under the influence of UV radiation. In addition, (+)-catechin was used simultaneously as a dye and an indicator of the aging time of polymeric materials. In contrast, polydatin did not dye polymers, but was a very good indicator of their lifetime, changing color under the influence of various external factors. Both polyphenols can be successfully used as natural additives for pro-ecological polyesters.


Assuntos
Materiais Biocompatíveis/química , Catequina/química , Glucosídeos/química , Poliésteres/química , Estilbenos/química , Varredura Diferencial de Calorimetria , Oxirredução , Poli-Hidroxialcanoatos/química , Polifenóis/química , Temperatura , Termogravimetria , Difração de Raios X
11.
Biomolecules ; 11(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396558

RESUMO

(+)-Catechin is a flavonoid with valuable antioxidant and antimicrobial properties, found in significant amounts in green tea leaves. Polymeric forms of catechin have been obtained by enzymatic reaction, photopolymerization, and polycondensation in designed processes. However, so far, poly(catechin) has not been received in the cross-linking reaction. Reactions with the cross-linking compound allowed for the preparation of antibacterial and antioxidant materials based on quercetin and rutin. The aim of the research was to obtain, for the first time, poly(catechin) by reaction with glycerol diglycide ether cross-linking compound. The polymeric form of (+)-catechin was confirmed using FTIR and UV-Vis spectroscopy. In addition, thermal analysis (TG and DSC) of the polymeric catechin was performed. The antioxidant and antibacterial activity of poly (flavonoid) was also analyzed. Poly(catechin) was characterized by greater resistance to oxidation, better thermal stability and the ability to reduce transition metal ions than (+)-catechin. In addition, the polymeric catechin had an antimicrobial activity against Staphylococcus aureus stronger than the monomer, and an antifungal activity against Aspergillus niger comparable to that of (+)-catechin. The material made on the basis of (+)-catechin can potentially be used as a pro-ecological stabilizer and functional additive, e.g., for polymeric materials as well as dressing materials in medicine.


Assuntos
Catequina/química , Reagentes de Ligações Cruzadas/química , Substâncias Macromoleculares/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Catequina/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Substâncias Macromoleculares/química , Oxirredução/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Quercetina/química , Quercetina/farmacologia
12.
Food Chem Toxicol ; 135: 110975, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31747619

RESUMO

This paper presents innovative packaging materials made of environmentally friendly biodegradable polymers (polylactide and polyhydroxybutyrate) with the addition of natural colorants commonly used in the food industry. Colorants fulfilled the role of indicator, changing colour under the influence of external factors, and gave the materials the characteristics of intelligent packaging, where colour changes indicated the life time of the materials. The paper gives the mechanical and thermal properties of the materials obtained, and describes changes in the colour of the samples under the influence of thermooxidation, UV and weathering, as well as the biodegradability of the materials. The packaging materials presented are in line with current trends in the packaging market and legal requirements. The samples, in addition to the basic functions of packaging materials, are pro-ecological and fully biodegradable new generation materials.


Assuntos
Plásticos Biodegradáveis/química , Compostos Cromogênicos/química , Embalagem de Alimentos , Materiais Inteligentes/química , Plásticos Biodegradáveis/metabolismo , Chaetomium/metabolismo , Clorofila/química , Curcumina/química , Luteína/química , Fungos Mitospóricos/metabolismo , Oxirredução , Poliésteres/química , Poliésteres/metabolismo , Materiais Inteligentes/metabolismo , Temperatura , beta Caroteno/química
13.
Chem Biodivers ; 16(12): e1900426, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31657102

RESUMO

Plant polyphenols, especially flavonoids, are active and pro-health substances found in fruits and vegetables. Quercetin and its glycoside rutin are representatives of flavonoids, commonly found in plant products. Catechins found in large quantities in tea are also a well-known group of natural polyphenols. These compounds are based on the structure of flavan-3-ol, which is why the number, positions and types of substitutions affect the scavenging of radicals and other properties. Despite some inconsistent evidence, several structure-activity relationships of monomeric flavonoids are well established in vitro. However, the relationships between the activity and other properties of the polymeric forms of flavonoids and their structures are poorly understood so far. The aim of this article is to compare the data on polymerization of quercetin, rutin and catechin, as well as to systematize knowledge about the structure-activity relationship of the polymeric forms of these compounds.


Assuntos
Catequina/química , Polifenóis/química , Quercetina/química , Rutina/química , Anti-Infecciosos/química , Antioxidantes/química , Flavonoides/química , Plantas/química , Plantas/metabolismo , Polimerização , Relação Estrutura-Atividade
14.
Food Chem ; 301: 125279, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377612

RESUMO

The objective of this work was to analyse the antiradical capacity of juglone (5-hydroxy-1,4,-naphthoquinone). The influence of oxidation and reduction on juglone was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), as well as spectrophotometric based methods. The role of juglone in oxidation processes, as either an antioxidant in browning reactions, was examined. These processes are characterized by a high chemical reactivity in redox. Juglone is irreversibly oxidized in at least one electrode step and reduced quasi-reversibly in at least three electrode steps. These results demonstrate that walnut genotypes have different radical scavenging powers. In addition, on the basis of thermogravimetry, it was demonstrated that 5-hydroxy-1,4-naphthalenedione has high thermal stability above 500 °C. The generation of reactive oxygen species and activity in redox processes show the properties of naphthoquinones that render these compounds interesting leads for the development of novel biomolecules for potential use in various therapeutic settings.


Assuntos
Naftoquinonas/química , Antioxidantes/análise , Antioxidantes/química , Eletroquímica , Juglans/química , Naftoquinonas/análise , Oxirredução
15.
Polymers (Basel) ; 11(4)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979074

RESUMO

The publication describes a process combining the extraction of plant material and impregnation of biodegradable polymers (polylactide (PLA) and polyhydroxyalkanoate (PHA)). As raw plant materials for making extracts, Cistus and green walnut husk were selected due to their high content of active phytochemicals, including antioxidants. The extracts used to impregnate polymers contained valuable polyphenolic compounds, as confirmed by FTIR and UV-Vis spectroscopy. After impregnation, the polymer samples showed greater thermal stability, determined by the differential scanning calorimetry (DSC) method. In addition, despite the presence of natural antibacterial and antifungal substances in the extracts, the polyester samples remained biodegradable. The manuscript also describes the effect of UV aging on the change of surface free energy and the color of polymers. UV aging has been selected for testing due to the high susceptibility of plant compounds to this degrading factor. The combination of the extraction of plant material and polymer impregnation in one process proved to be an effective and functional method, as both the obtained plant extracts and impregnated polymers showed the expected properties.

16.
Polymers (Basel) ; 10(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30961177

RESUMO

The stabilization efficiency of flavonoids (rutin and hesperidin) in polyester (polylactide (PLA) and polyhydroxyalkaonate (PHA)) composites under oxygen at high temperature was investigated. The polymer was homogenized with three antioxidants then processed by extrusion. The effects of stabilizers on the following physicochemical properties were investigated: melt flow, Vicat softening temperature, surface energy, and color change (Cie-Lab space). The aim of this study was to improve the stability of aliphatic polyesters by extending and controlling their lifetime. Differential Scanning Calorimetry DSC and Thermogravimetric analysis DTG methods were used to confirm the stabilizing effects (the inhibition of oxidation) of flavonoids (rutin and hesperidin) on the ageing process of biodegradable polymers. The levels of migration of plant antioxidants from PLA and PHA were determined and compared to the industrial stabilizer (Chimassorb 944 UV absorber). Based on this study, a comparable-to-higher efficiency of the proposed flavonoids for the stabilization of polyesters was found when compared to the commercial stabilizers. Thus, in the future, natural plant-derived substances may replace toxic hindered amines, which are commonly used as light stabilizers (HALS-Hindered Amine Light Stabilizers) in the polymer industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...